翻訳と辞書
Words near each other
・ Schwimmtor
・ Schwind
・ Schwind eye tech solutions
・ Schwindegg
・ Schwindratzheim
・ Schwingbach
・ Schwinge (Elbe)
・ Schwinge (Peene)
・ Schwingen
・ Schwinger
・ Schwinger function
・ Schwinger limit
・ Schwinger magnetic induction
・ Schwinger model
・ Schwinger parametrization
Schwinger variational principle
・ Schwinger's quantum action principle
・ Schwinger–Dyson equation
・ Schwingesperrwerk
・ Schwingt freudig euch empor, BWV 36
・ Schwingt freudig euch empor, BWV 36c
・ Schwingungen
・ Schwinkendorf
・ Schwinn Bicycle Company
・ Schwinn Racer
・ Schwinn Twinn
・ Schwippe
・ Schwirzheim
・ Schwissel
・ Schwob


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schwinger variational principle : ウィキペディア英語版
Schwinger variational principle

Schwinger variational principle is a variational principle which expresses the scattering T-matrix as a functional depending on two unknown wave functions. The functional attains stationary value equal to actual scattering T-matrix. The functional is stationary if and only if the two functions satisfy the Lippmann-Schwinger equation. The development of the variational formulation of the scattering theory can be traced to works of L. Hultén and J. Schwinger in 1940s.〔R.G. Newton, Scattering Theory of Waves and Particles〕
==Linear form of the functional==
The T-matrix expressed in the form of stationary value of the functional reads
: \langle\phi'|T(E)|\phi\rangle = T() \equiv
\langle\psi'|V|\phi\rangle + \langle\phi'|V|\psi\rangle - \langle\psi'|V-VG_0^(E)V|\psi\rangle ,
where \phi and \phi' are the initial and the final states respectively, V is the interaction potential and G_0^(E) is the retarded Green's operator for collision energy E. The condition for the stationary value of the functional is that the functions \psi and \psi' satisfy the Lippmann-Schwinger equation
: |\psi\rangle = |\phi\rangle + G_0^(E)V|\psi\rangle
and
: |\psi'\rangle = |\phi'\rangle + G_0^(E)V|\psi'\rangle .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schwinger variational principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.